AP CALCULUS BC Unit 3 Outline – Advanced Differentiation Techniques

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
9/6	DERIVATIVES OF EXPONENTIAL AND	Ex. 1 Evaluate $\frac{d}{dx}(e^x)$ using the limit definition of the derivative.	
	LOGARITHMIC Functions	Ex. 2 Differentiate $f(x) = e^{\sin(2x)}$.	
		Ex. 3 Differentiate $y = \ln \square$.	
		Ex. 4 Find the derivative of $f(x) = \ln(\sin x + e^x - x^3)$.	
		Ex. 5 Differentiate $y = \log_b$	
		Ex. 6 Differentiate $f(x) = \log_7(3x + \tan 5x)$	
		Ex. 7 Differentiate $y = b^{\square}$	
		Ex. 8 Differentiate $f(x) = 3^{\sin(x^2)}$	
AP MULI	FIPLE CHOICE		
What are	e the equations of the horizon	ontal asymptotes of the graph of $y = \frac{2x}{\sqrt{x^2 - 1}}$?	
(A) <i>y</i> =	(A) $y = 0$ only		
(B) y =	(B) $y = 1$ only		
(C) y =	(C) $y = 2$ only		
(D) y =	(D) $y = -2$ and $y = 2$ only		
(E) y =	(E) $y = -1$ and $y = 1$ only		
Let f be the function defined by $f(x) = \begin{cases} x^2 + 2 & \text{for } x \le 3, \\ 6x + k & \text{for } x > 3. \end{cases}$			
If f is continuous at $x = 3$, what is the value of k?			
(A) -7	(A) -7 (B) 2 (C) 3 (D) 7 (E) There is no such value of k .		
HOMEWO	DRK	Worksheet 14	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
9/9	IMPLICIT DIFFERENTIATION	Ex. 1 Find $\frac{dy}{dx}$ for $y^2 = x$.	
		Ex. 2 Find $\frac{dy}{dx}$ for $2y = x^2 + \sin y$.	
		Ex. 3 Find the equations of the tangent and normal line for $x^2 - xy + y^2 = 7$ at $(-1, 2)$	
		Ex. 4 Find $\frac{d^2 y}{dx^2}$ for $x^2 - y^2 = 16$ in terms of x and y.	
AP MULT	IPLE CHOICE		
What is	What is the slope of the line tangent to the curve $y + 2 = \frac{x^2}{2} - 2\sin y$ at the point (2, 0)?		
(A) –2	(B) 0 (C)	$\frac{1}{2}$ (D) $\frac{2}{3}$ (E) 2	
HOMEWO	RK	Worksheet 15	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
9/10	IMPLICIT DIFFERENTIATION	Ex. 1 Find $\frac{dy}{dx}$ for $x^3 + 5xy - y^3 = 11$. Ex. 2 If $e^y - e^{y^2} = x - x^3$, then the value of $\frac{dy}{dx}$ at the point (0,1) is Ex. 3. Find the equation of the tangent and normal line to $x^2y^2 = 9$ at (-1,3).	
AP MULT	TPLE CHOICE		
Suppose value of	Suppose $\ln x - \ln y = y - 4$, where y is a differentiable function of x and $y = 4$ when $x = 4$. What is the value of $\frac{dy}{dx}$ when $x = 4$?		
(A) 0	(B) $\frac{1}{5}$ (C) $\frac{1}{3}$	(D) $\frac{1}{2}$ (E) $\frac{17}{5}$	
Homewo	PRK	Worksheet 16	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/11	DERIVATIVES OF INVERSE TRIG FUNCTIONS	Ex. 1 Differentiate $y = \arcsin(3x+2)$ Ex. 2 Find y' for $y = \arccos(2x^3)$ Ex. 3 $\frac{d}{dx}\arccos(\tan x)$ Ex. 4 Find the derivative of $y = \tan^{-1}(3-5x)$.
AP MULT	AP MULTIPLE CHOICE	
If $\arcsin x = \ln y$, then $\frac{dy}{dx} =$		
(A) $\frac{y}{\sqrt{1-x}}$	$\frac{y}{\sqrt{1-x^2}} \qquad (B) \frac{xy}{\sqrt{1-x^2}}$	(C) $\frac{y}{1+x^2}$ (D) $e^{\arccos x}$ (E) $\frac{e^{\arcsin x}}{1+x^2}$
HOMEWO	ORK	Worksheet 17

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/12	DERIVATIVES OF FUNCTIONS DEFINED AS INVERSES	 Let f (x) = x³ - 5x² - 8 and let g be the inverse function of f. (a) Find f (1) and f '(1). (b) Find g (-12) and g '(-12).
AP MULT	TIPLE CHOICE	

х	f(x)	f'(x)
0	1	1
1	3	4
2	11	13

The table above gives selected values for a differentiable and increasing function f and its derivative. If g is the inverse function of f, what is the value of g'(3)?

(A) $\frac{1}{13}$ (B) $\frac{1}{4}$ (C) 1 (D) 4 (E) 13

The function *h* is given by $h(x) = x^5 + 3x - 2$ and h(1) = 2. If h^{-1} is the inverse of *h*, what is the value of $(h^{-1})'(2)$?

(A)
$$\frac{1}{83}$$
 (B) $\frac{1}{8}$ (C) $\frac{1}{2}$ (D) 1 (E) 8

HOMEWORK Worksheet 18

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
9/13	LOGARITHMIC DIFFERENTIATION	Ex. 1 Differentiate $f(x) = x^x$ Ex. 2 Differentiate $f(x) = x^{\sin x}$	
AP MULT	AP MULTIPLE CHOICE		
If $\lim_{h \to 0} \frac{\arcsin(a+h) - \arcsin(a)}{h} = 2$, which of the following could be the value of <i>a</i> ?			
(A) $\frac{\sqrt{2}}{2}$	$\frac{\overline{2}}{2} \qquad (B) \ \frac{\sqrt{3}}{2}$	(C) $\sqrt{3}$ (D) $\frac{1}{2}$ (E) 2	
HOMEWORK		Worksheet 19	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/16	REVIEW	None
AP MULT	TPLE CHOICE	
If $f(x)$	$= \sin x + 2x + 1$ and g i	s the inverse function of f, what is the value of $g'(1)$?
(A) $\frac{1}{3}$	(B) 1 (C) 3	(D) $\frac{1}{2 + \cos 1}$ (E) $2 + \cos 1$
If $y^2 - 2x^2y = 8$, then $\frac{dy}{dx} =$		
(A) $\frac{1}{y}$	$\frac{4}{-2x}$ (B) $\frac{2xy}{y-x^2}$	(C) $\frac{4+2xy}{y-x^2}$ (D) $\frac{2xy}{y+x^2}$ (E) $\frac{2xy+x^2}{y}$
Номеwo	DRK	Worksheet 20

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/17	FREE RESPONSE QUESTIONS	None
HOMEWORK		Worksheet 21 – FRQ

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/18	Exam	None
HOMEWORK		None